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Abstract 1
This poper presenti 4 new approach to a gesturw

tmcking s~stem using maf-time range on-demand. The
system represent8 a gesture-controlled interface for in-
teractive visual mplomtion of large data sets. The
paper descn”bes a method performing mnge process-
ing onl~ when necessary and where neceswxy. Range
data is processed onl~ for non-static regions of inter-
est. This is accomplished bp o set of filters on the
color, motion, and range data. The speedup achieved
is between 41% and 54%. The algon”thm 41s0 includes
a robust skin color segmentation insewitive to illumi-
nation changes. Selective range processing result,~ in
dynamic regional range images (DRRIs), This devel-
opment is also placed in a broader contet’t of a biolog.
id visual system emulation, specifically redundancies
and attention mechanisms.

1 Introduction
Hecent years have seen a drastic increase in the size

and complexity of scientific data. NIH’s Vkible Hu-
man project generated data sets of a single 3-D vol-
ume consisting of 12 billion elements. Nearly a ter-
abyte of satellite data is produced daily. Advanced
physics simulation here, at the Lawrence Livermore
National Laboratory (LLNL), is responsible for gen-
erating large data sets, which plan to increase to one
terabyte every five minutes by the year 2004. ‘lb
ditiond visuahzation represents the last step in data
processing. However, efficiency of such processing suf-
fers when errors we discovered at this point, and the
entire data analysis cycle has to start over. Therefore,
the trend in data growth is amplified by increasing
requirements for interactive data sccess, dkplay, ex-
ploration, amdysis and collaboration. Focused on the
development of efficient techniques addressing these
requirements, SAVAnTS (Scalable Algorithms for Vi-
suahzation and Analysis of Terascale Science) project
is a collaboration between the Center for Applied Sci-
entific Computing at LLNL and multiple academic
partners. With such substantial amounts of data to
explore, we are also interested in developing new in-
teractive settings that would allow scientists to explore

lThis work was performed under the auspiceaof the U.S. D*
partment of Enerw by University of Cahfomia Lawrence Liver-
more National Laboratory under contract number W-7405-Eng-
48, UCRI-JC-136053

their data in a more intuitive environment. The data
would be projected on a large screen, and updated
in red-time following gestur+ based commands of in-
teracting scientists. The gesture tracking system de
scribed in this paper will be responsible for supplying
data manipulation parameters to interactive data ex-
ploration and collaborative visuahzation software, and
to vitiual reahty systems.

Siice the system is developed w a front end for
gesturecontrolled larg+scale vi.mmhzation and virtual
reahty manipulation, certain requirements and com-
plications are obvious. First, 3-D information is re-
quired, not necessarily at a video frame rate, but
at least a few times per second (optimal pamuneters
should be determined as a result of testing on a large
group of people). Second, not only arms or hands, but
also the entire body of the interacting person is mov-
ing. More over, interaction will take place in front of
the large screen where the data being manipulated will
be dkplayed. Most of the time the data will be up-
dated dynamically as a result of such manipulations,
and, therefore, traditional techniques such as, back-
ground subtraction cannot easily separate figure from
the background. Thkd, motion of the interacting per-
son should be natural and result in intuitive data ma-
nipulation, where intuitive means easy to learn and
fast to achieve immediate results.

Object trackiig from image sequences is a very im-
portant research domain. Goals of object trackiig in-
clude segmenting each frame into dtierently moving
objects, selecting the object of interest, and analyz-
ing its motion during the entire sequence or multiple
sequences. Therefore, object tracking involves pro-
cessing of both spatial and temporal data. A number
of applications is dealing with tracking the motion of
the human body. These applications include videc-
surveilhmce, gestur~based interfaces to multimedia
applications and systems, interkwes for people with
disabilities that prevent them from using the stan-
dard input technology, and videoconferencing. The
most popular mode of HCI is based on devices like
keyboards and mice, which limit the speed and nat-
uralness of the interaction [12]. There is a continu-
ing effort to involve human communication through
movement in the design and development of computer
interfaces that adequately capture such natural forms



of communication. Another application is object ma-
nipulation in virtual environments.

‘lhdkional approachm to tracking typically relied
on segmentation of the intensity data, using motion
or appearance data. A majority of the methods be-
gan by segmenting the human body from the back-
ground. For instance, in “blob approaches” people
were modeled as a number of blobs resulting from
pixel classification baaed on their color and position
in the image. Wren et al. [19] acldeved segmentation
by classifying pixels into one of several models, in-
cludhg a static world and a dynamic user represented
by gaussian blobs. Yang and Ahuja [21] used skin
color and the geometry of palm and face regions for
segmentation stages of their system. A Gaussian mix-
ture (with parameters estimated by an EM algorithm)
modeled the dktribution of skin color pixels. Regh
and Kanade [14] used a 3-D hand model to track a
hand. They compared liie features from the images
with the projected model and performed incremen-
tal state corrections. Similar work was presented by
Kucb and Huang [10] in whkh the synthesis process
could fit the hand model to any person’s hand. Bo-
bick and Wilson [3] treated gesture as a sequence of
states and computed configuration states along protc-
type gestures. Yaxoob and Black proposed parametri-
zed representation of human movement [20]. Cutler
and Davis [5] segmented the motion and computed a
moving objects self-simikuit y (includhg humaa mw
tion experiments). A review by Aggarwcd and Ci[ [1]
claasiiied approaches to human motion analysis, the
tasks involved, and major areas related to human nm-
tion interpretation. A review by Pavlovic et al. [12]
addressed main components and dkections in gesture
recognition research for HCI.

It is known that color-baaed skin detection tech-
niques are susceptible to variability in lighting con-
ditions [12]. Some common solutions included [12]:
specially colored gloves or markers, restrictive back-
grounds or clothing, prior knowledge of initial hand
positions, or movement restrictions. Goals of our
project exclude such simplifications. Instead we use
the SCT/Center algorithm that can handle changing
illumination. It was originally developed for skin can-
cer detection using color features [18]. Later the algu-
rithm was successfully tested for position estimation
of micr-rovers [13].

Usefulness of 3-D data in gesture amlysis applica-
tions is not questionable. Since most machine vision
system try to recover useful information about a scene
from its projections, having three-dnensional (3-D)
data eliminates ambiguities in solving the inversion
of a many-tc-one mapping. The projection of human
movement often can be affected by the observation
viewpoint and the distance from the camera [20]. Most
gesture tracking and recognition applications could

certainly benefit from including ramge data and having
more inforrnatilon recovered from a scene, However,
until recently, using range data for tracking was not
feasible because of the speed and cost considerations.
Some authors used multiple cameras and models to
obtain 3-D locations of body parts. Azarbayejani and
Pentland [2] triangulated on blobs composing a model.
Gavrila and Davis [71 addressed whole-body tracking
witb four cameras placed in the corners of the room.
Segen and Kumar [15] used depth cues from projec-
tions of the hand and its shadow for 3-D hand pose
estimation, Otherwise range data was used in motion
analysis primarily in an oflhe mode [16, 17].

Recent availability of less expensive, faster range
data makes it a feasible additional source of inform~
tion for trackhg, Thk is the first red-time gesture
tracking system that utilizes on-demand range in both
spatial and temporal representations. It will be ap-
plied to natural navigation and visuaEzation of large
data sets. The method is also applicable to virtual re
ahty systems. Oda et al. [11] reported application of a
real-time range to virtual reaMy whkh utilized com-
parison of the depth information in red and synthetic
data. In addk.ion to the efficient range processing, pr~
posed method also desk with the major shortcoming
of color-baaed Iocahzation methodologies variability of
the skin color classification results under different il-
lumination condk,ions.

2 Description of the Method
Both color and range image are gmbbed syn-

chronou.dg, and color image is extracted and rectified
(corrected for lens distortions). However, mnge is not
processed at thk point (Figure 1) as one would ex-
pect. Instead, a number of filters are applied to the
color data. These filters acldeve a goal of locahzing
regions of interest (ROIS), specifically hands for our
application (since their motion will provide input to
visualization progrmns).

Fkst, color feature filters are applied. The spher-
ical coordinate transform (SCT) separates the color
and brightness information. Color normalization prc-
vides SCTS insensitivity to variations in illumination
(see Appendix 2). LAB space is computed, and pixels
are classified as skk we computed using derived sta-
tistical data. A skin classifier with minimum dktance
classifier using Mahalanobk dktance (see Appendix 2)
selects pixels that can be considered skh pixels.

Noise removal is acheved with a sequence of er-
sions and dilations. The connected component analy-
sis is performed next by scanning from left to right and
from top to bottom, labeling, and evaluating equiva-
lences. Resulting regions are sorted, and small regions
are removed from further consideration. F@gion area
is evaluated with respect to the image size. Other ge-
ometry and shape filters are designed to eliminate re
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Figure 1: Algorithm of the range on-demand ap-
proach.

gions with unlikely shapes for human faces or hands,
includkg long regions, regions with very few pixels
(less than 30%) classified as skin.

The human hands and faces are difficult to detect
when only color information is used. Experiments in
the next section use a simulation of a possible virtual
scene with objects of various shapes and sizes, and a
robotic hand which could be following human gestures
in a completed back-end virtual retit y application.
One of the objects, a ball in the center of the scene,
is given color properties very similar to human skrn to
confuse the program.

However, additional filters are set to prevent such
confusion. A static region detection filter (defined for
frames after the first) determines the absence of cur-
rent motion for a given region. The filter evaluates it
proportionally to the average noise level and the image

3

size (since motion considered neglectable for relatively
lmge images cam be considered important for smaller
ones). The process results in dynamic regional range
images (DRRIs). Static regions are shown on DRRIs
as outlines only, since range is not computed for them,
DRRIs contain range information for regions of inter-
est (with pixels still classified as skin after color- and
gmmetry-bassd filters) moving in the current frame,
outliies for static regions and recent motion informa-
tion for both.

Only non-static regions are selected for rzmge pro-
cessing which takes plaze at thk point (again let us
note that color and range were grabbed synchronously,
only the range processing was postponed). Stereo is
estimated only for selected ROJS.. Thus, the compu-
tation bottleneck is greatly reduced (see next section
for spssdup percentages vs. region sizes).

Next, the depth analysis filter evaluates whether
ROIS ti)bit face or hands geometry since the depth is
known at thk step, absolute sizes are computed. Non-
human regions are excluded from the motion compu-
tation, but currently still tracked on the color images
and DRRIs for visual purposes. If skh colored mov-
ing objects pass previous filters, then they are unveiled
at this point (ad not included into motion computa-
tion). The entire algorithm of the range on-demand
approach is shown in F@re 1.

3 Experimental Results

The following experiments involve application of
the algorithm to color and range image sequences of
gestures. ~lclops color stereo vision system (manu-
fmtured by Point Grey Resemch, Vancouver, Canada)
is used to capture these sequencss. The module con-
nects to a singls-processor Pentium III PC. Range in-
formation is recovered in real time from a correlation-
b=ed trinocular stereo algorithm (see Appendm 1 for
details about the algorithm).

Typical color and ramge images produced by the
stereo vision system are shown in Figure 2. Closer
objects appear lighter in the range data, except for
the darkest mess (for instance, some hair and far wall
regions) indicating that no correspondence was found
during the stereo matcbiig process. As a result of

applying COIOrinformation-based filters, skin regions
are selected (shown as white areas in the binary image
in Figure 3(a), and as a rectangular enclosing boxes
in F@e 3(b)).

Selected frames from sequences of intensity and
DRR images are shown in Figures 5 and 4. Frames
we chosen when both color and ramge information
was scheduled to be processed (every n – th frame
in the algorithm, where 7a=5). To tell the preparation
stage from the nucleus and retraction stages, inter-
actors will use a fist as if grabbing the object being
manipulated. That is why frames, taken during ges-









processing can be considered one of such tasks. Accu-
racy demands for many tasks rise faster than hardware
improvements. That is why recent precision scanners
spend more time on range acquisition and computa-
tion than older, less accurate models. For instance,
it takes on average more then 30 seconds to acquire
and compute range data using a K2T scanner on a
SUN SPARC 20, and more than 2 minutes using a
Cyberware scanner on Sihcon Graphics 02 (consider-
ing higher precision achieved with the latter). Thk
makes an interesting case for applying other human
perception phenomenons to this problem.

The phenomenon of attention in human vision [4] is
a biological solution to the problems of complexity and
overabundance of data It is a means to put the lim-
ited resources of the visual system into the right place
(and the right orientation) at the right time, and to set
the mind in the right context. An important point is
the limited amount of available computational power,
both in our brain and in the computer (for range pro-
cessing) that we actually have. On the biological side,
this might be the reason for the usefulness of atten-
tiomd mechanisms. The attentionzd mechanism: can
then be seen as the tool for granting “computational
resources” to the tasks, accordhg to their dynamic
priorities. Another view of attention is as a mecha-
nism for determining regions of interest in an image
(DRRIs in the proposed approach).

Attention includes certain aspects [4] similar to the
properties oft he described system such as filtering un-
necessary data and attending to selected sources only
(such as hand motion in the described system), search-
ing for a particular feature (skin color), and expecting
something to happen meanwhile attending to empty
space (static region outlines in DRRIs).

Another way to schedule the range processing com-
putations is to describe a system of states and op,?ra-
tors in such a way that a heuristic evaluation function
can guide their application. A sketch of thk part of
such a system is given in the following

1) the space of states S includes states that corre-
spond to sets of ROIS;

2) the set of operators includes transformations T
between the states in the temporal and spatial senses;

3) there ace means of computing the cost of an arc
(s1, S2);

4) a current state at any time is represented t,y a
D-

5) a goal-state predicate is defined whkb returns
true when a state represents a completely tracked (and
recognized) gesture.

Thus, the process of gesture trackhg with real-
time range on-demand may be thought of as finding
a path through a “regional attention” kind of graph.
The path nodes corresponding to states of ROIS. A
minimum-cost path from the start state to a goal state

is therefore analogous to a maximum likelihood clas-
sification of the gesture sequence.

6 Conclusions and Future Work
Thk paper presented a new approach to a ges.

ture tracking system using real-time range on-demand.
The system represents a gesture-controlled interface
for interactive visual exploration of large data sets.
The paper described a method performing range pro-
cessing only when necessary and where necessary.
Thk is achieved by a set of filters on the color, mo-
tion, and range data, The speedup ach~eved is be-
tween 41% and 54%, The algorithm also includes a
robust skin color segmentation insensitive to illumi-
nation changes. Selective range processing results in
dynamic regional range images (DRRIs). This devel-
opment is also placed in a broader context of a biolog-
ical visual system emulation, specifically redundancies
and attention mechanisms.

The gesture tracking system described in this paper
will be responsible for supplying data manipulation
parameters to interactive data exploration and col-
laborative visualization software. Processing 1 range
image for every 4 color images is done at a rate of
10.6 frames per second for a 320x240 image size, and
at a rate of 16.5 frames per second for 160x120 im-
ages. Therefore, the method is applicable to the rezd-
time processing. More over, since the ‘Mclops library
is currently optimized for thread parallel processing,
a much greater speedup can be achieved on a dud-
processor NT machine (we plan to move the system
there in the near future).

Robustness of the approach is achieved with mul-
tiple input feature sets. Depth filters are necessary in
add]tion to color, motion and shape filters. Increased
speed of processing can also facilitate a combination of
intensity- and range-based input features. Range data
enables localized search for specific features, which im-
proves tratilng reliability and speed.

DRR& can be included in motion analysis, trajec-
tory computation, gesture recognition, to determine
what types of gestures are natural and feasible for
robust trackhg and interpretation for interactive ex-
ploration of large data sets and virtual environments.
They can be easily plotted in a 3-D space for move-
ment trajectory pammeterization.
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A Appendix
A.1 Range Computation

The Triclops stereo vision system [8] computes range
baeed on triangulation between camerw. It consists of

a three-cmnera module. Offset in positions of the cau-
eras produces differences in resulting images. These images
are compared using square masks to establish correspon-

dences [S]:

Where d~i” and d~.. are the minimum and maximum
disparities, m is the mask size, 1.i9M and lj.,t are the

right and left images, r-pectively [S]. Since the camera
parameters (their relative positions, the focal length and

resolution) are fixed, m-calibration is not usually required.
According to the multi-bmeline stereo theory [9, 11] used

in the sterm computation by the system, distzmce z to the
scene point is related to the disparity d, b=eline length B
amd focal length F

(2)
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The total amount of computation for stereo procesing

pw frame (required for the Sum of Absolute Difference?
algorithm) is estimated w [11]:

N2M’d(C – l)P (3)

where N2 is the image size, C is the number of cam-
eras (three for the system used), and P is the number of

operations per one square difference calculation.

A.2 SCT Color Space
The main rewon SCT became an integral part in

numerous applications in the medical imaging [18] and
robotics [13] is because it separates the color and bright-
ness information. This allows for a much more reliable
segmentation based on the color data which is normally

greatly allected by the lighting conditions.
The spherical coordinate transform from the RGB space

into a LAB space is defined as [13]:

,B=:x ,(’)j ,,&,%
where L is the one-dimensional brightness space and

angles A and B determme a two-~menmonal color space.
Color normalization provides SCTS insensitivity to varia-
tions in illumination. L can be viewed as a norm of the
vector flom the origin to the point in RGB space, .4 is

the angle between the vector and the blue axis, and B is RED
—k#. s——

the angle between the red axis and the projection of tbe (a) (b)

vector onto the RG plane (Figure 8(a)). As a result of
the transform, a new color space is represented by a color Figure 8: RGB and LAB color spaces: (a) LAB values

triangle which can be partitioned into the specified num- for a point in RGB space, (b) partitioning of the color

ber of cl= (Figure 8(b)). Greater number of classes triangle into classes.

improves discrimination. The minimum and maximum A
and B values are calculated, delhing such areas within the

triangle in equal anguku increments. The RGB means are
defined for each class.

Pixels with certain color properties are found in the

image using the minimum distance classifier with M&+-

kmobis distance. It can be defined w a distance from the
feature vector X to the mean vector M.

r = /(x – M.) C; ’(X – Mm) (5)

where CL is the covariance matrix for X
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